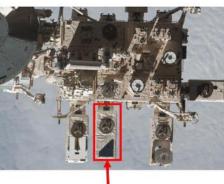
LLUMA-T Cold Plate Weight Optimization

Amer Almarri, Casey Cohen, Sophronia Eckenrode, Matthew Maron, Austin Wilson

Dr. Coverstone, Dr. Swain **Department of Mechanical and Aerospace Engineering**


Abstract

The purpose of this project is to redesign the liquid cold plate, an active cooling method of thermal management, for NASA's ILLUMA-T, the terminal component of the first fully operational space-toground laser communications. It is imperative that power dense electronics have robust electronics heat reduction; therefore, the cold plate is required. The focus of the redesign is to minimize the weight of the cold plate while maintaining its thermal performance, size, and cost. Minimizing weight is critical in space applications, since every kilogram launched into space has a significant fuel cost; in this case, the cold plate will be flown aboard the International Space Station (ISS) in low earth orbit (LEO). Even launches to LEO can carry a fuel cost of \$9000 ~ \$20,000. The existing cold plate is unnecessarily heavy, weighing 40.2 kg. redesign methodology produced a 40% lighter plate with a minimized pressure drop.

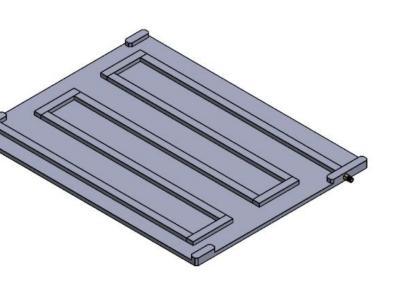
Introduction

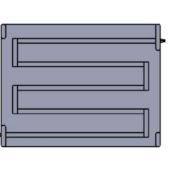
The purpose of this project is to redesign the liquid cold plate, an active cooling method of thermal management, for NASA's ILLUMA-T. The focus of the redesign is to minimize the weight of the cold plate, its pressure drop, and manufacturing cost while maintaining its thermal performance and dimensions. Space electronics need to be maintained within a certain usage temperature range sometimes they must be heated, and sometimes they must be cooled. Cold plates provide a heat sink for high power electronics, so that necessary heat transfer can occur.[1] This project develops an optical communications user terminal to demonstrate high bandwidth data transfer between LEO and the ground through the geosynchronous Laser Communications Relay Demonstration (LCRD) relay. ILLUMA-T will be the first demonstration of a LEO user of the LCRD system, pointing and tracking from a moving spacecraft at LEO to GEO (geosynchronous orbit) satellite and vice versa, end-to-end operational utility of optical communications, and 51 Mbps forward link to ISS from ground. The speed of optical communications systems is their great advantage.

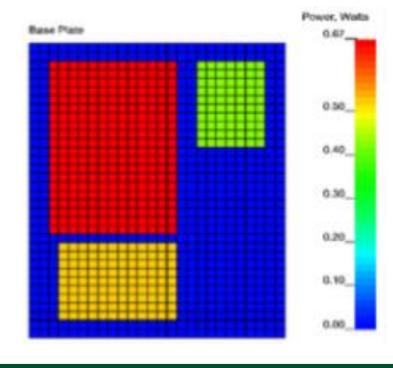
ILLUMA-T

Total Pressi

UNIVERSITY OF MIAMI COLLEGE OF ENGINEERING




Methods | Design | Analysis


We manufactured a prototype plate half the size of full-size plate due to cost and manufacturing constraints designed to meet all objectives. The 90 degree turns maximize heat transfer and more evenly distribute the heat throughout the plate. The plate is finished by semi-circularly milling and welding on top of the fluid path.an aluminum bar of 1.00×0.50 -inch cross section. Plate seen below.

Solidworks drawing and fully realized manufactured prototype cold plate. The plate was tested in the lab to ensure proper temperature and pressure drop. The prototype was also modeled in EPAC to determine the temperature gradient of the heat across the plate. This technology was also used to determine the performance of a full-size plate seen below

Results

Prototype Results

	EPAC Lamina		Laminar (Convection	Turbulent Convection		Experiment	
ure Drop	0.0740 psi		0.0484 psi		0.0624 psi		0.1083 psi	
						EPAC		
		Theoretical		Experimental		Free Convection	No Convection	
Power Output		300.17 W		300.17 W		300.17 W	300.17 W	
Heat Absorbed		300.17 W		180.15 W		227.12 W	300.17 W	
Temp. Rise		1.69 C		1.02 C		1.25 C	1.70 C	

Full Scale Results

Power Input	Power absorbed by NASA (FC-72)	Full scale model simulated temperature rise (water)	Adjusted full scale model temperature rise for same efficiency as NASA (water)	Temperature rise after conversion of water to FC-72	Temperature rise of NASA simulated model
260 W	250 W	1.43 C	1.37 C	5.38 C	5.55 C
A	werage temperature o		Pressure Drop (psi)		
Modom		Control Electronics	Power Controller	Frictional	.112
20.20 C		19.16 C	19.40 C	Tube-turn loss	.074
				Total	.186

Transforming Lives Through Teaching, Research, & Service

Conclusion

In summation, the objectives of weight and cost minimization set forth for the project were achieved.

93.310	s 54.1 lbs	40470	
		43.4 %	\$4I4k
c Original	Redesigned	Weight Reduction	Cost Savings
		Recuencia	5511165
sults Tak	eaways A	chievements	
	C NASA Plate	NASA Plate Plate	NASA Plate Plate Reduction

Hot allowable limits: Control Electronics: 40C Power Controller: 50 C Maximum cold plate temperature of 21.11 C and averages under each component 20.2 C, 19.16 C, 19.40 C, respectively

hermal performance is
slightly less than
original plate but
difference is allowable.
Electrical components
are well within the
allowable temperature
limit.

Objectives of cost and weight minimization vere achieved through he redesign of the full scale cold plate. We also were able to maintain thermal performance

Acknowledgments

We extend so much gratitude to our mentors, Dr. Coverstone who helped guide our research, and Dr. Swain who aided greatly in testing and allowed us the use of his lab. We also would like to thank our donors!.

\$250 Contribution

ALSTOM Alstom

\$100 Contribution

Design Interface Inc. \$1000 Contribution

COLLEGE of ENGINEERING UM COE \$250 Contribution

References

Miedza, B. and Behrens, B. (1997). Cold Plate Development for Space Station Application. Sixth European Symposium on Space Environmental Control Systems. Retrieved from: https://ui.adsabs.harvard.edu/abs/1997ESASP.400..299M/abstract

Cornwall, D. (2015). NASA's Laser Communication Tech for Spacecraft Zaps Forward. Retrieved from:https://www.space.com/30452-nasalaser-communications-system-spacecraft.html